amounts of compression. For example, the amount of elastomer provided may be different at the ankle area 110 than at the knee area 120, which may also be different from the elastomer amount at the thigh area 130, which may be different than the elastomer amount at the waist area 140.

[0014] More generally, a garment in accordance with the present invention such as tights 100 may be thought of as providing varying amounts of compression along an extremity of the wearer with the amount of compression provided varying from the end of the extremity distant from the core of the wearer's body to a minimum compression near the core of the wearer's body. As can be seen in the example of FIG. 1, elastomer rings such as first ring 115 located near the ankle region 110 of the wearer may have a first thickness, while a second elastomer ring 125 located near the knee region 120 of the wearer may have a second thickness that is less than the first thickness. Meanwhile, a third elastomer ring 135 located near the thigh region 130 of the wearer may have a third thickness that may be less than the first thickness of the first ring 115 and the second thickness of the second ring 125, while a further region of the garment such as waist region 140 may possess no elastomer rings at all, relying only upon the compressive force of the base textile itself to provide any compression desired in that region. As illustrated by relative compression gradient 150 in FIG. 1, the amount of compression provided by tights 100 varies from the greatest compression at the ankles of the wearer to the least compression at the waist of the wearer. For example, tights 100 may provide 20 mmHg of compression at the ankles 110, 10 mmHg at the knees 120, and essentially 0 mmHg at the waist 140 or hips. By way of another example, tights 100 may provide between 20 and 30 mmHg of compression at the ankles 110, between 10 and 15 mmHg at the knees 120, and between 0 and 5 mmHg at the waist 140 or hips. By way of yet further example, tights 100 may provide between 30 and 40 mmHg at the ankles 110, between 10 and 20 mmHg at the knees 120, and between 0 and 5 mmHg at the waist 140 or hips. Some compression gradient configurations possible within the scope of the present invention may require or benefit from prescription guidance from an appropriate healthcare practitioner. The compression gradient of tights 100 or other garments in accordance with the present invention may be substantially linear in its variance, as in the examples provided herein, but may vary in non-linear fashions as well, for example with high compression at the ankles 110, equally or nearly as equally high compression at the knees 120, rapidly decreasing compression over the thighs 130, and then nearly no compression at the waist 140. While other compression gradients may be desired, for example with higher compression near the core of the wearer and less compression at the end of the limbs of a wearer, the present example illustrated in FIG. 1 represents only one example of a compression gradient that may be desired by some wearers.

[0015] Referring now to FIG. 2, an example of a first elastomer ring 115 is illustrated. First elastomer ring 115 may have a first thickness 201 that provides a corresponding amount of compressive force. First elastomer ring 115 may be joined with elastomer rings above and/or below it on the garment by a connecting portion 117. Numerous additional connecting portions other than connecting portion 117 illustrated in FIG. 2 may be provided around the extent of an elastomer ring. Below 111 elastomer ring 115, the compressive force of the garment may be provided only by the base

textile, while directly above 113 elastomer ring 115, the compressive force of the garment may likewise be provided only by the base textile. The amount of compressive force provided by elastomer ring 115 may be determined by the thickness 201 of elastomer ring 115. Thickness 201 may comprise the height and/or width of the elastomer ring, as both the height from the base textile and the width along the base textile may be varied in applying the elastomer. While first elastomer ring 115 illustrated in the example of FIG. 2 roughly corresponds to the ankle area 110 illustrated in FIG. 1, first elastomer 115 may correspond to any other region of a garment and any other portion of the wearer's body when the garment is worn.

[0016] Referring now to FIG. 3, a second elastomer ring 125 is illustrated. The example second elastomer ring 125 of FIG. 3 may correspond to the knee region 120 of the tights 100 illustrated in the example of FIG. 1, but may correspond to any other region of a garment or any other portion of a wearer's anatomy when the garment is worn. As illustrated in the example of FIG. 3, second elastomer ring 125 has a second thickness 301, such second thickness 301 being less than first thickness 201 illustrated with regard to FIG. 2. Immediately below 121 second elastomer ring 125 and immediately above 123 second elastomer ring 125, the compressive force of the garment is provided only by the base textile. Meanwhile, within second elastomer ring 125, the compressive force of the garment is provided by both the base textile and the elastomer ring 125. The amount of compressive force provided by second elastomer ring is determined by the thickness 301 of second elastomer ring 125. Similar to that illustrated in FIG. 1, one or more connecting portions 127 may join elastomer ring 125 with rings above and/or below elastomer ring 125 on the garment. [0017] Referring now to FIG. 4, a third elastomer ring 135

having a third thickness 401 is illustrated. In the present example, third elastomer ring 135 may generally correspond to the thigh region 130 of the wearer, but the example of third elastomer ring 135 may correspond to any other region of a garment or portion of the anatomy of the person wearing such a garment. As illustrated in the example of FIG. 4, third elastomer ring 135 may have a third thickness 401 that determines the amount of compressive force applied by third elastomer ring 135. Within third elastomer ring 135, the compressive force applied by the garment will be the sum of the force exerted by elastomer ring 135 and the base textile. Immediately below 131 and above 133 third elastomer ring 135, the compressive force applied by the garment is only that produced by the base textile. Once again, one or more connecting portions 137 may join elastomer ring 135 to rings immediately above and/or below it.

[0018] While FIGS. 2-4 illustrate only three discrete examples of rings with three specific elastomer thicknesses, the present invention may utilize any number of elastomer rings and thicknesses. For example, no two elastomer rings on a garment in accordance with the present invention need have the same thickness. In other words, the compressive force exerted by a garment in accordance with the present invention may vary quite gradually along the garment, without sudden changes between discrete zones or bands of a garment. Meanwhile, connecting portions such as, but not limited to, exemplary connecting portions 117, 127, 137 may join the various elastomer rings provided on the garment in accordance with the present invention to facilitate donning of the garment. Such connecting portions may